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Abstract. Neural fields have gained significant attention in the com-
puter vision community due to their excellent performance in novel view
synthesis, geometry reconstruction, and generative modeling. Some of
their advantages are a sound theoretic foundation and an easy implemen-
tation in current deep learning frameworks. While neural fields have been
applied to signals on manifolds, e.g., for texture reconstruction, their rep-
resentation has been limited to extrinsically embedding the shape into
Euclidean space. The extrinsic embedding ignores known intrinsic man-
ifold properties and is inflexible wrt. transfer of the learned function. To
overcome these limitations, this work introduces intrinsic neural fields,
a novel and versatile representation for neural fields on manifolds. In-
trinsic neural fields combine the advantages of neural fields with the
spectral properties of the Laplace-Beltrami operator. We show theoreti-
cally that intrinsic neural fields inherit many desirable properties of the
extrinsic neural field framework but exhibit additional intrinsic qualities,
like isometry invariance. In experiments, we show intrinsic neural fields
can reconstruct high-fidelity textures from images with state-of-the-art
quality and are robust to the discretization of the underlying manifold.
We demonstrate the versatility of intrinsic neural fields by tackling var-
ious applications: texture transfer between deformed shapes & different
shapes, texture reconstruction from real-world images with view depen-
dence, and discretization-agnostic learning on meshes and point clouds.

1 Introduction

Neural fields have grown incredibly popular for novel view synthesis since the
breakthrough work by Mildenhall et al. [29]. They showed that neural radiance
fields together with differentiable volume rendering can be used to reconstruct
scenes and often yield photorealistic renderings from novel viewpoints. This in-
spired work in related fields, e.g., human shape modeling [34], shape and texture
generation from text [28], and texture representation on shapes [32,2], where
neural fields are able to generate a wide variety of functions with high fidelity.
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Fig. 1: (a) Overview of our method. We use the eigenfunctions φi of the Laplace-
Beltrami operator (LBO) at each point as a point embedding γ(p). This overcomes
the spectral bias of the multilayer perceptron (MLP) fθ, and hence the combined
intrinsic neural field Fθ can represent a high-frequency function on the surface. Notice
that p can be inside a triangle, and the function is clearly more detailed than the
discretization (insets). (b) An intrinsic neural texture field trained on one shape (top)
can be transferred to a new shape (bottom) without retraining. (c) Due to our intrinsic
approach (LBO eigenfunctions) local geometry is maintained in close but separate
parts, whereas an extrinsic approach (Random Fourier Features [51]) shows bleeding
artifacts when trained with sparse supervision.

These methods use neural fields as functions from a point in Euclidean space
to the quantity of interest. While this is valid for many applications, for others,
the output actually lives on a general manifold. For example, texture mappings
define a high-frequency color function on the surface of a 3D object. Texture-
Fields [32] and Text2Mesh [28] solve this discrepancy by defining a mapping of
each surface point to its Euclidean embedding and then learning the neural field
there. Both show that they can achieve detail preservation above the discretiza-
tion level, but the detour to Euclidean space has drawbacks. The Euclidean and
geodesic distance between points can differ significantly. This is important on
intricate shapes with fine geometric details that overlap because the local ge-
ometry prior is lost. Further, extrinsic representations cannot be used in the
presence of surface deformations without retraining or applying heuristics.

Similar challenges have been solved in geometry processing by using purely
intrinsic representations, most famously properties derived from the Laplace-
Beltrami operator (LBO). Some of the main advantages of the LBO are its
invariance under rigid and isometric deformations and reparametrization. We
follow this direction by defining intrinsic neural fields on manifolds independent
of the extrinsic Euclidean embedding and thus inherit the favorable properties
of intrinsic representations. This is enabled by the fact that random Fourier fea-
tures [51], an embedding technique that enabled the recent success of Euclidean
neural fields, have an intrinsic analog based on the LBO. The result is a fully
differentiable method that can learn high-frequency information on any 3D ge-
ometry representation that admits the computation of the LBO. A schematic
overview of our method can be found in Figure 1. Our main theoretical and
experimental contributions are:
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– We introduce intrinsic neural fields, a novel and versatile representation
for neural fields on manifolds. Intrinsic neural fields combine the advantages
of neural fields with the spectral properties of the Laplace-Beltrami operator.

– We extend the neural tangent kernel analysis of [51] to the manifold set-
ting. This yields a proof characterizing the stationarity of the kernel induced
by intrinsic neural fields and insight into their spectral properties.

– We show that intrinsic neural fields can reconstruct high-fidelity tex-
tures from images with state-of-the-art quality.

– We demonstrate the versatility of intrinsic neural fields by tackling various
applications: texture transfer between isometric and non-isometric shapes,
texture reconstruction from real-world images with view dependence, and
discretization-agnostic learning on meshes and point clouds.

The source code can be found at github.com/tum-vision/intrinsic-neural-fields.
This work studies how a neural field can be defined on a manifold. Cur-

rent approaches use the extrinsic Euclidean embedding to define the neural field
on a manifold in the extrinsic embedding space – we describe this approach in
Sec. 3.1. In contrast, our approach uses the well-known Laplace-Beltrami Opera-
tor (LBO), which we briefly introduce in Sec. 3.2. The final definition of intrinsic
neural fields is given in Sec. 4. The experimental results are presented in Sec. 5.

2 Related Work

This work investigates neural fields for learning on manifolds, and we will only
consider directly related work in this section. We point interested readers to the
following overview articles: neural fields in visual computing [59], advances in
neural rendering [52], and an introduction into spectral shape processing [25].

Neural Fields. While representing 3D objects and scenes with coordinate-
based neural networks, or neural fields, has already been studied more than
two decades ago [16,37,36], the topic has gained increased interest following the
breakthrough work by Mildenhall et al. [29]. They show that a Neural Radi-
ance Field (NeRF) often yields photorealistic renderings from novel viewpoints.
One key technique underlying this success is positional encoding, which trans-
forms the three-dimensional input coordinates into a higher dimensional space
using sines and cosines with varying frequencies. This encoding overcomes the
low-frequency bias of neural networks [38,3] and thus enables high-fidelity recon-
structions. The aforementioned phenomenon is analyzed using the neural tangent
kernel [20] by Tancik et al. [51], and our analysis extends theirs from Euclidean
space to manifolds. Simultaneously to Tancik et al., Sitzmann et al. [48] use
periodic activation functions for neural scene representation, which is similar
to the above-mentioned positional encoding [4]. Additionally, many other works
[61,41,40,27,22,19,64,55,26] offer insights into neural fields and their embedding
functions. Most notably, [14] introduces spectral features for transformers on
graphs. However, none of these works considers neural fields on manifolds.
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Neural Fields on Manifolds. Prior works [32,11,2,58,34,30,60,28,18] use neural
fields to represent a wide variety of quantities on manifolds. Oechsle et al. [32]
use the extrinsic embedding of the manifold to learn textures as multilayer per-
ceptrons. Their Texture Fields serve as an important baseline for this work.
NeuTex by Xiang et al. [58] combines neural, volumetric scene representations
with a 2D texture network to facilitate interpretable and editable texture learn-
ing. To enable this disentanglement, their method uses mapping networks from
the 3D space of the object to the 2D space of the texture and back. We compare
with an adapted version of their method that utilizes the known geometry of the
object. Baatz et al. [2] introduce NeRF-Tex, a combination of neural radiance
fields (NeRFs) and classical texture maps. Their method uses multiple small-
scale NeRFs to cover the surface of a shape and represent mesoscale structures,
such as fur, fabric, and grass. Because their method focuses on mesoscale and
artistic editing, we believe that extending the current work to their setting is
an interesting direction for future research. Further, neural fields are used to
represent quantities other than texture on manifolds. Palafox et al. [34] define a
neural deformation field that maps points on a canonical shape to their location
on the deformed shape. This model is applied to generate neural parametric
models which can be used similarly to traditional models like SMPL [24]. Yifan
et al. [60] decompose a neural signed distance function (SDF) into a coarse SDF
and a high-frequency implicit displacement field. Morreale et al. [30] define neu-
ral surface maps, which can be used to define surface-to-surface correspondences
among other applications. Text2Mesh [28] uses a coarse mesh and a textual
description to generate a detailed mesh and associated texture as neural fields.

Intrinsic Geometry Processing. Intrinsic properties are a popular tool in geom-
etry processing, especially in the analysis of deformable objects. The most basic
intrinsic features are Gauss curvature and intrinsic point descriptors based on the
Laplace-Beltrami operator (LBO). They have been heavily used since the intro-
duction of the global point signature [42] and refined since then [50,1]. Intrinsic
properties are not derived from a manifold’s embedding into its embedding space
but instead arise from the pairwise geodesic distance on the surface. These are
directly related to natural kernel functions on manifolds, e.g., shown by the ef-
ficient approximation of the geodesic distance from the heat kernel [12]. Kernel
functions as a measure of similarity are popular in geometry processing. They
have been used in various applications, e.g., in shape matching [54,9,23], par-
allel transport [46], and robustness wrt. discretization [53,44]. Manifold kernels
naturally consider the local and global geometry [5], and our approach follows
this direction by showing a natural extension of neural fields on manifolds.

3 Background

Differential geometry offers two viewpoints onto manifolds: intrinsic and ex-
trinsic. The extrinsic viewpoint studies the manifold M through its Euclidean

embedding where each point p ∈ M is associated with its corresponding point
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in Euclidean space. In contrast, the intrinsic viewpoint considers only properties
of points independent of the extrinsic embedding, such as, the geodesic distance
between a point pair. Both can have advantages depending on the method and
application. An intrinsic viewpoint is by design invariant against certain defor-
mations in the Euclidean embedding, like rigid transformations but also pose
variations that are hard to characterize in the extrinsic view.

3.1 Neural Fields for Euclidean Space

A Euclidean neural field FE
θ : Rm → R

o is a neural network that maps points in
Euclidean space to vectors and is parametrized by weights θ ∈ R

p. The network
is commonly chosen to be a multilayer perceptron (MLP). Let M ⊂ R

m be a
manifold with a Euclidean embedding into R

m. Naturally, the restriction of FE
θ

to M leads to a neural field on a manifold: Fθ : M → R
o ,Fθ(x) = FE

θ (x) .
Natural signals, such as images and scenes, are usually quite complex and

contain high-frequency variations. Due to spectral bias, standard neural fields fail
to learn high-frequency functions from low dimensional data [51,48] and generate
blurry reconstructions. With the help of the neural tangent kernel, it was proven
that the composition FE

θ ◦ γ of a higher dimensional Euclidean neural field and
a random Fourier feature (RFF) encoding γ helps to overcome the spectral bias
and, consequently, enables the neural field to better represent high-frequency
signals. The RFF encoding γ : Rm → R

d with d ≫ m is defined as

γ(x) = [a1 cos(b
⊤
1 x), a1 sin(b

⊤
1 x), . . . , ad/2 cos(b

⊤
d/2x), ad/2 sin(b

⊤
d/2x)], (1)

where the coefficients bi ∈ R
m are randomly drawn from the multivariate normal

distribution N (0, (2πσ)2I). The ai are often set to one and σ > 0 is a hyperpa-
rameter that offers a trade-off between reconstruction fidelity and overfitting.

3.2 The Laplace-Beltrami Operator

In the following, we briefly introduce the Laplace-Beltrami operator (LBO) and
refer the interested reader to [42] for more details. The LBO △M is the general-
ization of the Euclidean Laplace operator on general closed compact manifolds.
Its eigenfunctions φi : M → R and eigenvalues λi ∈ R are the non-trivial so-
lutions of the equation △Mφi = λiφi . The eigenvalues are non-negative and
induce a natural ordering which we will use for the rest of the paper. The eigen-
functions are orthonormal to each other, build an optimal basis for the space
of square-integrable functions [35], and are frequency ordered allowing a low-
pass filtering by projecting onto the first k eigenfunctions. Hence, a function
f : M → R ∈ L2(M) can be expanded in this basis:

f =
∞
∑

i=0

ciφi =
∞
∑

i=0

⟨f, φi⟩φi ≈
k

∑

i=0

⟨f, φi⟩φi , (2)

where the quality of the last ≈ depends on the amount of high-frequency in-
formation in f . The projection onto the LBO basis is similar to the Fourier
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transform, allowing the same operations, and thus we use the LBO basis as the
replacement for Fourier features. In fact, if [0, 1]2 is considered as a manifold, its
LBO eigenfunctions with different boundary conditions are exactly combinations
of sines and cosines. Furthermore, the eigenfunctions of the LBO are identical
up to sign ambiguity for isometric shapes since the LBO is entirely intrinsic.

4 Intrinsic Neural Fields

We introduce Intrinsic Neural Fields based on the eigenfunctions of the Laplace-
Beltrami operator (LBO) which can represent detailed surface information, like
texture, directly on the manifold. In the presence of prior geometric information,
it is more efficient than using an extrinsic embedding which is often mainly
empty. Further, this representation is naturally invariant to translation, rotation,
different surface discretization, as well as isometric deformations.

Definition 1 (Intrinsic Neural Field). Let M ⊂ R
m be a closed, compact

manifold and φ1, . . . , φd be the first d Laplace-Beltrami eigenfunctions of M. We

define an intrinsic neural field Fθ : M → R
o as

Fθ(p) = (fθ ◦ γ)(p) = fθ(a1φ1(p), . . . , adφd(p)) . (3)

where γ : M → R
d, γ(p) = (a1φ1(p), . . . , adφd(p)), with ai ≥ 0 and λi = λj ⇒

ai = aj, is our embedding function and fθ : Rd → R
o represents a neural network

with weights θ ∈ R
p.

Within this work, we will use ai = 1, which has proven sufficient in praxis,
and multilayer perceptrons (MLPs) for fθ, as this architectural choice is common
for Euclidean neural fields [59]. A detailed description of the architecture can be
found in the supplementary material. It is possible to choose different embedding
functions γ but we choose the LBO eigenfunctions as they have nice theoretical
properties (see Section 4.1) and are directly related to Fourier features.

In Fig. 2, we apply intrinsic neural fields to the task of signal reconstruction
on a 1D manifold to give an intuition about how it works and what its advantages
are. The results show that the neural tangent kernel (NTK) for intrinsic neural
fields exhibits favorable properties, which we prove in Sec. 4.1. We show that we
can represent high-frequency signals on manifold surfaces that go far beyond the
discretization level. In Sec. 5, we apply the proposed intrinsic neural fields to a
variety of tasks including texture reconstruction from images, texture transfer
between shapes without retraining, and view-dependent appearance modeling.

4.1 Theory

In this section, we prove that the embedding function γ proposed in Definition 1
generalizes the stationarity result of [51] to certain manifolds. Stationarity is a
desirable property if the kernel is used for interpolation, for example, in novel
view synthesis [51, App. C]. Fourier features induce a stationary (shift-invariant)
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Fig. 2: Signal reconstruction. (2b) The target is sampled at 32 points and MLPs with
three layers, 1024 channels, and different embeddings are trained using L2 loss. The
intrinsic neural field with d=8 eigenfunctions performs best. Using only two eigenfunc-
tions leads to oversmoothing. The reconstruction with the extrinsic embedding and
random Fourier features (RFF) [51] can capture the high-frequency details, but intro-
duces artifacts when the Euclidean distance is not a good approximation of the geodesic
distance, for example, at points A & B. (2d-2g) The second row of subfigures shows the
pairwise neural tangent kernel (NTK) [20,31] between all points on the manifold. (2d)
The NTK using the extrinsic Euclidean embedding is not maximal along the diagonal.
(2e) For the NTK with RFF embedding the maximum is at the diagonal because each
point’s influence is maximal onto itself. However, it has many spurious correlations be-
tween points that are close in Euclidean space but not along the manifold, for example,
around B. (2f,2g) The NTK with our intrinsic embedding is localized correctly and is
stationary (c.f. Thm. 1), which makes it most suitable for interpolation.

(a) XYZ: S1 (b) RFF: S1 (c) Ours: S1 (d) Ours: S2 (e) Ours: S3

Fig. 3: Neural tangent kernels (NTKs) [20,31] with different embedding functions. The
source S1 lies directly inside the ear of the cat. (3a) The NTK using the extrinsic
Euclidean embedding is not maximal at the source. (3b) The NTK using random
Fourier features (RFF) [51] is localized correctly, but shows wrong behavior on the cat’s
body. (3c) The NTK with our intrinsic embedding is localized correctly and adapts
to the local and global geometry. (3d,3e) Additionally, the NTK with our intrinsic
embedding is nearly shift-invariant, if the local geometry is approximately Euclidean:
When the source is shifted from S2 to S3 the kernel is approximately shifted as well.
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neural tangent kernel (NTK). Namely, the composed NTK for two points in
Euclidean space x,y ∈ R

m is given by kNTK(x,y) = (hNTK ◦ hγ)(x− y) where
hNTK : R → R is a scalar function related to the NTK of the MLP and hγ : Rm →
R is a scalar function related to the Fourier feature embedding [51, Eqn. 7,8].
Extending this result to p,q ∈ M on a manifold is challenging because the point
difference p− q and, therefore, stationarity is not defined intrinsically.

Stationarity on Manifolds. While one could use the Euclidean embedding of the
manifold to define the difference p − q, this would ignore the local connectiv-
ity and can change under extrinsic deformations. Instead, we use an equivalent
definition from Bochner’s theorem which states that in Euclidean space any
continuous, stationary kernel is the Fourier transform of a non-negative measure
[39, Thm. 1]. This definition can be directly used on manifolds, and we define a
kernel k : M×M → R to be stationary if it can be written as

k(p,q) =
∑

i

k̂(λi)φi(p)φi(q) , k̂(λi) ≥ 0 ∀i , (4)

where the function k̂ : R → R
+
0 is akin to the Fourier transform. This implies

that k̂(λi) and k̂(λj) for identical eigenvalues λi = λj must be identical.

First, we want to point out that for inputs with ∥x∥ = ∥y∥ = r the result of
kNTK(x,y) = hNTK(⟨x,y⟩) shown by [20] for r = 1 and used in [51] still holds.
We include this slight extension as Lemma 1 in the suppl. This is a prerequisite
for the following theorem which requires the same setting as used in [20].

Theorem 1. Let M be S
n or a closed 1-manifold. Let (λi, φi)i=1,...,d be the pos-

itive, non-decreasing eigenvalues with associated eigenfunctions of the Laplace-

Beltrami operator on M. Let ai ≥ 0 be coefficients s.t. λi = λj ⇒ ai = aj, which
define the embedding function γ : M → R

d with γ(p) = (a1φ1(p), . . . , adφd(p)).
Then, the composed neural tangent kernel kNTK : M×M → R of an MLP with

the embedding γ is stationary as defined in Eq. 4.

Proof. Let M = S
n and let Hn

l be the space of degree l spherical harmonics
on S

n. Let Ylm ∈ Hn
l be the m-th real spherical harmonic of degree l with

m = 1, . . . , dimHn
l . Notice that the spherical harmonics are the eigenfunctions

of the LBO. We will use j to linearly index the spherical harmonics and l(j) for
the degree. Spherical harmonics of the same degree have the same eigenvalues,
thus we use cl(j) = aj = ai for λi = λj to denote the equal coefficients for same
degree harmonics. First, the norm of the embedding function is constant:

∥γ(q)∥2 =
∑

j

c2l(j)φ
2
j (q) =

∑

l

c2l

dimHn
l

∑

m=1

Y 2
lm(q)

(a)
=

∑

l

c2lZl(q,q)
(b)
= const . (5)

Here, Zl(q,q) is the degree l zonal harmonic and (a,b) are properties of zonal
harmonics [13, Lem. 1.2.3, Lem. 1.2.7]. Due to Eq. 5 and Lemma 1 (supp.)
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kNTK(γ(p), γ(q)) = hNTK(⟨γ(p), γ(q)⟩) ∀p,q ∈ M holds. It follows:

⟨γ(p), γ(q)⟩ =
∑

j

c2l(j)φj(p)φj(q) =
∑

l

c2l

dimHn
l

∑

m=1

Ylm(p)Ylm(q) (6)

(c)
=

∑

l

c2lZ
l
p(q)

(d)
=

∑

l

c2l (1 + l/α)Cα
l (⟨p,q⟩) , (7)

where Cα
l : [−1, 1] → R are the Gegenbauer polynomials which are orthogonal

on [−1, 1] for the weighting function wα(z) = (1− z2)α−1/2 with α = (n− 1)/2
[13, B.2]. Equality (c) holds again due to [13, Lem. 1.2.3]. Equality (d) holds due
to a property of Gegenbauer polynomials [13, Thm. 1.2.6], here ⟨p,q⟩ denotes
the extrinsic Euclidean inner product. For the composed NTK we obtain

kNTK(γ(p), γ(q)) = hNTK

(
∑

lc
2
l (1 + l/α)Cα

l (⟨p,q⟩)
)

. (8)

We see that kNTK(γ(p), γ(q)) is a function depending only on ⟨p,q⟩. Because the
Gegenbauer polynomials are orthogonal on [−1, 1], this function can be expanded
with coefficients ĉl ∈ R, which yields

kNTK(γ(p), γ(q)) =
∑

l

ĉl (1 + l/α)Cα
l (⟨p,q⟩) =

∑

l

ĉl Z
l(p,q) (9)

=
∑

l

ĉl

dimHn
l

∑

m=1

Ylm(p)Ylm(q) =
∑

j

ĉl(j)φj(p)φj(q) . (10)

The coefficients ĉl(j) are non-negative as a consequence of the positive definite-
ness of the NTK [20, Prop. 2] and a classic result by Schoenberg [13, Thm. 14.3.3].
This shows that kNTK(γ(p), γ(q)) is stationary as defined in Equation 4. ⊓⊔

The adapted proof for 1-manifolds can be found in the supplementary. A qualita-
tive example of the stationary kernels can be seen in Fig. 2. The theorem does not
hold for general manifolds, however, our experiments with different γ (Tab. 1)
indicate the eigenfunctions are still a superior choice for complex manifolds. We
leave the theoretical explanation for this behaviour to future work.

5 Experiments

We refer to the supplementary material for all experimental details and hyper-
parameter settings as well as further results. To facilitate fair comparisons, all
methods use the same hyperparameters like learning rate, optimizer, number of
training epochs, and MLP architecture except when noted otherwise. For base-
lines using random Fourier features (RFF), we follow [51] and tune the standard
deviation σ (c.f. Eq. 1) of the random frequency matrix to obtain optimal results.
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5.1 Texture Reconstruction from Images

To investigate the representation power of the proposed intrinsic neural fields,
we consider the task of texture reconstruction from posed images as proposed
by Oechsle et al. [32] in Tab. 1 and Fig. 4. The input to our algorithms is a set
of five 512×512 images with their camera poses and the triangle mesh of the
shape. After fitting the intrinsic neural field to the data, we render images from
200 novel viewpoints and compare them to ground-truth images for evaluation.

For each pixel, we perform ray mesh intersection between the ray through
the pixel and the mesh. The eigenfunctions of the Laplace-Beltrami operator are
defined only on vertices of the mesh [45]. Within triangles, we use barycentric
interpolation. We employ the mean L1 loss across a batch of rays and the RGB
color channels. The eigenfunction computation and ray-mesh intersection are
performed once at the start of training. Hence, our training speed is similar to
the baseline method that uses random Fourier features. Training takes approx.
one hour on an Nvidia Titan X with 12 GB memory.

Comparison with State of the Art Methods. We compare against Texture
Fields [32] enhanced with random Fourier features (RFF) [51]. Additionally,
we compare against NeuTex [58], which uses a network to map a shape to the
sphere and represents the texture on this sphere. We adapt NeuTex s.t. it takes
advantage of the given geometry, see supplementary. Tab. 1 and Fig. 4 show that
intrinsic neural fields can reconstruct texture with state-of-the-art quality. This
is also true if the number of training epochs is decreased from 1000 to 200.

Ablation Study. We investigate the effect of different hyperparameters on the
quality of the intrinsic neural texture field. The results in Tab. 2 show that the
number of eigenfunctions is more important than the size of the MLP, which
is promising for real-time applications. A model using only 64 eigenfunctions
and 17k parameters3 still achieves a PSNR of 29.20 for the cat showing that
intrinsic neural fields can be a promising approach for compressing manifold
data. Additionally, we test the importance of the choice of Laplace-Beltrami
eigenfunctions as γ for the results. Tab. 1 shows that popular point descriptors
[50,43], that achieve great results in the difficult task of shape matching, perform
worse within our framework. This indicates that, although we were not able to
proof it, an extension of Thm. 1 likely holds on 2D manifolds.

5.2 Discretization-agnostic Intrinsic Neural Fields

For real-world applications, it is desirable that intrinsic neural fields can be
trained for different discretizations of the same manifold. First, the training
process of the intrinsic neural field should be robust to the sampling in the
discretization. Second, it would be beneficial if an intrinsic neural field trained
on one discretization could be transferred to another, which we show in Sec. 5.3.

3 For reference: a 80× 80 3-channel color texture image has over 17k pixel values.
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Table 1: Texture reconstruction from images. Our intrinsic neural fields show state-
of-the-art performance (first block), even with fewer training epochs (Ep. ↓, second

block). For a fair comparison, we improve Texture Fields by employing the same MLP
architecture as our model and by using random Fourier features (TF+RFF ). NeuTex
has more parameters than our model but we increase the embedding size (Em. ↑) to
match. We adapt NeuTex to take advantage of the given geometry (see supplementary).
The methods are evaluated on novel views using PSNR, DSSIM [56], and LPIPS [63].
DSSIM and LPIPS are scaled by 100. The intrinsic representation shows better results
than the extrinsic representation (TF+RFF ) as well as when mapping to a textured
sphere (NeuTex ). The last block shows the performance of our method when using
point descriptors HKS [50] and SHOT [43] instead of the proposed γ input.

Em. Ep.
cat human

PSNR ↑ DSSIM ↓ LPIPS ↓ PSNR ↑ DSSIM ↓ LPIPS ↓

NeuTex [58] 63 1000 31.60 0.242 0.504 29.49 0.329 0.715
NeuTex Em. ↑ 1023 1000 31.96 0.212 0.266 29.22 0.306 0.669
TF+RFF (σ=4) [32,51] 1023 1000 33.86 0.125 0.444 32.04 0.130 0.420
TF+RFF (σ=16) 1023 1000 34.19 0.105 0.167 31.53 0.193 0.414
TF+RFF (σ=8) 1023 1000 34.39 0.097 0.205 32.26 0.129 0.336
Intrinsic (Ours) 1023 1000 34.82 0.095 0.153 32.48 0.121 0.306

NeuTex Ep. ↓ 1023 200 30.96 0.290 0.355 28.02 0.418 0.900
TF+RFF (σ=8) Ep. ↓ 1023 200 34.07 0.116 0.346 31.85 0.142 0.427
Intrinsic (Ours) Ep. ↓ 1023 200 34.79 0.100 0.196 32.37 0.126 0.346

Ours (HKS) 352 1000 23.40 1.219 2.877 22.26 0.904 2.347
Ours (SHOT) 352 1000 26.44 0.780 1.232 28.04 0.421 0.965
Ours (Efcts.) 352 1000 34.19 0.119 0.345 31.63 0.150 0.489

To quantify the discretization dependence of intrinsic neural fields, we follow
the procedure proposed by Sharp et al. [44, Sec. 5.4] and rediscretize the meshes
used in Sec. 5.1. The qualitative results in Fig. 5 and the quantitative results
in Tab. 3 show that intrinsic neural fields work across various discretizations.
Furthermore, Fig. 6 shows that transferring pre-trained intrinsic neural fields
across discretizations is possible with minimal loss in visual quality.

5.3 Intrinsic Neural Field Transfer

One advantage of the Laplace-Beltrami operator is its invariance under isome-
tries which allows transferring a pre-trained intrinsic neural field from one man-
ifold to another. However, this theoretic invariance does not hold completely
in practice, for example, due to discretization artifacts [21]. Hence, we employ
functional maps [33] computed with Smooth Shells [15] to correct the transfer
of eigenfunctions from source to target shape, see Fig. 6 for results. Specifically,
transfer is possible between different discretizations, deformations [49] of the
same shape, and even shapes from different categories. It is, of course, possible
to generate similar results with extrinsic fields by calculating a point-to-point
correspondence and mapping the coordinate values. However, functional maps
are naturally low-dimensional, continuous, and differentiable. This makes them
a beneficial choice in many applications, especially related to learning.
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(a) NeuTex [58] (b) TF (σ=8) [32,51] (c) Ours (d) GT Image

Fig. 4: Texture reconstruction from images. (4a) NeuTex uses a network to map from
the shape to the sphere and represents the texture on the sphere, which yields dis-
tortions around the shoe. (4b) Texture Fields (TF) [32] with random Fourier Features
(RFF) [51] learns the texture well and only around the breast pocket our method shows
slightly better results. (4c) Intrinsic neural fields can reconstruct texture from images
with state-of-the-art quality, which we show quantitatively in Tab. 1.

(a) orig (b) iso (c) dense (d) qes (e) cloud ↓

Fig. 5: Discretization-agnostic intrinsic neural fields. Our method produces identical
results for a variety of triangular meshings and even point cloud data. For the point
cloud, we use local triangulations [45, Sec. 5.7] for ray-mesh intersection. Pre-trained
intrinsic neural fields can be transferred across discretizations as shown in Fig. 6.

(a) source (b) dense (c) ARAP [49] (d) TOSCA cat 2 (e) TOSCA dog 0

Fig. 6: Intrinsic neural field transfer. (6a) The pre-trained intrinsic neural texture field
from the source mesh is transferred to the target shapes using functional maps [33,15].
(6b,6c) The transfer across rediscretization (c.f. Fig. 5) and deformation gives nearly
perfect visual quality. (6d,6e) As a proof of concept, we show artistic transfer to a
different cat shape and a dog shape from the TOSCA dataset [8]. Both transfers work
well but the transfer to the dog shows small visual artifacts in the snout area due to
locally different geometry. Overall, the experiment shows the advantage of the intrinsic
formulation which naturally incorporates field transfer through functional maps.
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Table 2: Ablation study based on the texture reconstruction experiment (c.f. Sec. 5.1).
The number of eigenfunctions is more important than the size of the MLP which is
promising for real-time applications. A model using only 64 eigenfunctions and only
17k parameters still achieves a PSNR of 29.20 for the cat, which shows that intrinsic
neural fields can be a promising approach for compressing manifold data.

#Params #φ
cat human

PSNR ↑ DSSIM ↓ LPIPS ↓ PSNR ↑ DSSIM ↓ LPIPS ↓

Full model 329k 1023 34.82 0.095 0.153 32.48 0.121 0.306

Smaller MLP 140k 1023 34.57 0.108 0.205 32.20 0.134 0.379
Fewer eigenfunctions 83k 64 31.18 0.284 0.927 28.95 0.312 1.090
Smaller MLP & fewer efs 17k 64 29.20 0.473 1.428 26.72 0.493 1.766
Just 4 eigenfunctions 68k 4 22.84 1.367 3.299 20.60 1.033 2.756

Table 3: Discretization-agnostic intrinsic neural fields. We employ the procedure pro-
posed by Sharp et al. [44, Sec. 5.4] to generate different discretizations of the original
meshes (orig): uniform isotropic remeshing (iso), densification around random vertices
(dense), refinement and subsequent quadric error simplification [17] (qes), and point
clouds sampled from the surfaces with more points than vertices (cloud ↑) and with
fewer points (cloud ↓). The discretizations are then used for texture reconstruction as
in Sec. 5.1. For the point clouds, we use local triangulations [45, Sec. 5.7] for ray-mesh
intersection. This table and the qualitative results in Fig. 5 show that intrinsic neu-
ral fields can be trained for a wide variety of discretizations. Furthermore, pre-trained
intrinsic neural fields can be transferred across discretizations as shown in Fig. 6.

cat human

Method orig iso dense qes cloud ↑ cloud ↓ orig iso dense qes cloud ↑ cloud ↓

PSNR ↑ 34.82 34.85 34.74 35.07 34.91 33.17 32.48 32.63 32.57 32.49 32.45 31.99
DSSIM ↓ 0.095 0.093 0.096 0.096 0.096 0.130 0.121 0.117 0.120 0.121 0.123 0.135
LPIPS ↓ 0.153 0.152 0.159 0.147 0.152 0.220 0.306 0.300 0.301 0.297 0.307 0.323

5.4 Real-world Data & View Dependence

We validate the effectiveness of intrinsic neural fields in a real-world setting on
the BigBIRD dataset [47]. The dataset provides posed images and reconstructed
meshes, and we apply a similar pipeline as in Sec. 5.1. However, the objects here
are not perfectly Lambertian, and thus, view dependence must be considered.
For this, we use viewing direction as an additional input to the network, as done
in [29]. At first glance, using the viewing direction in its extrinsic representa-
tion opposes our intrinsic definition of neural fields. However, view dependence
arises from extrinsic effects, such as lighting, which cannot be represented purely
intrinsically. Fig. 7 shows that we can reconstruct high-quality textures from
real-world data with imprecise calibration and meshes, quantitative results are
shown in the supplementary. Decomposing the scene into intrinsic properties
of the object, like the BRDF, and the influence of the environment, like light
sources, is an interesting future application for our method, similar to what has
been done in the context of neural radiance fields [10,62,6,57,7].
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(a) Baseline [47] (b) Ours (c) GT Image (d) Baseline (e) Ours (f) GT Image

Fig. 7: Texture reconstruction from real-world data. (7b,7e) Intrinsic neural fields can
reconstruct high quality textures from the real-world BigBIRD dataset [47] with im-
precise calibration and imprecise meshes. (7a,7d) The baseline texture mapped meshes
provided in the dataset show notable seams due to the non-Lambertian material, which
are not present in our reconstruction that utilizes view dependence as proposed by [29].

6 Conclusion

Discussion. The proposed intrinsic formulation of neural fields outperforms the
extrinsic formulation in the presented experiments. However, if the data is very
densely sampled, and the kernel is thus locally limited, the extrinsic method
can overcome many of its weaknesses. In practice, dense sampling often leads to
increased runtime of further processing steps, and thus we consider our intrinsic
approach still superior. Further, we provided the proof for a stationary NTK on
n-spheres. Our experiments and intuition imply that even for general manifolds,
it is advantageous how the NTK takes local geometry into account. The details
leave an interesting direction for further theoretical analysis.

Conclusion. We present intrinsic neural fields, an elegant and direct general-
ization of neural fields for manifolds. Intrinsic neural fields can represent high-
frequency functions on manifold surfaces independent of discretization by mak-
ing use of the Laplace-Beltrami eigenfunctions. We introduce a new definition
for stationary kernels on manifolds, and our theoretic analysis shows that the
derived neural tangent kernel is stationary under specific conditions. We con-
duct experiments to investigate the capabilities of our framework on the appli-
cation of texture reconstruction from a limited number of views. Furthermore,
the learned functions can be transferred to new examples using functional maps
without any retraining, and view-dependent changes can be incorporated. In-
trinsic neural fields outperform competing methods in all settings. Additionally,
they add flexibility, especially in settings with deformable objects due to the
intrinsic nature of our approach.
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